Lucas Griva
Machine Learning Engineer at Pi Data Strategy & Consulting- Claim this Profile
Click to upgrade to our gold package
for the full feature experience.
-
Inglés Professional working proficiency
-
Español Native or bilingual proficiency
Topline Score
Bio
Credentials
-
Advanced SQL for Data Science: Time Series
LinkedInDec, 2020- Nov, 2024 -
MongoDB Aggregation Framework
CourseraDec, 2020- Nov, 2024 -
NLP with Python for Machine Learning Essential Training
LinkedInDec, 2020- Nov, 2024 -
Advanced SQL for Data Scientists
LinkedInNov, 2020- Nov, 2024 -
Analyzing Big Data with SQL (con Honores)
CourseraNov, 2020- Nov, 2024 -
Managing Big Data in Clusters and Cloud Storage (con Honores)
CourseraNov, 2020- Nov, 2024 -
Programa Especializado - Modern Big Data Analysis with SQL
CourseraNov, 2020- Nov, 2024 -
Aprendizaje Automatizado (Machine Learning)
Facultad de Ciencias Exactas, Ingeniería y AgrimensuraMay, 2017- Nov, 2024 -
The Data Science Course 2021: Complete Data Science Bootcamp
UdemyJan, 2015- Nov, 2024 -
Microsoft Certified: Azure Data Scientist Associate
MicrosoftDec, 2021- Nov, 2024
Experience
-
Pi Data Strategy & Consulting
-
Argentina
-
Information Services
-
100 - 200 Employee
-
Machine Learning Engineer
-
Mar 2022 - Present
-
-
-
Accenture Argentina
-
Argentina
-
Business Consulting and Services
-
700 & Above Employee
-
Data Science Analytics Analyst
-
Jun 2021 - Mar 2022
Encargado de desarrollar e implementar modelos de forecasting para demanda diaria por producto, demanda horaria de órdenes y de ocupación de parking lot en un quick service restaurant. Implementación de prácticas de Machine Learning Operations para entrenamiento y despliegue continuo de la solución en plataforma de Azure Machine Learning. Análisis y cuantificación de efecto halo y canibalización entre productos en un retail store. Trabajo bajo metodologías ágiles. Stack tecnológico: Azure (Azure Machine Learning, Azure Databricks, Azure SQL Server, Azure Data Factory).
-
-
-
CCT CONICET ROSARIO
-
Research Services
-
1 - 100 Employee
-
PhD. Candidate
-
Apr 2015 - Aug 2020
Using machine learning and time series modelling for 60- and 120 min. ahead prediction of diabetic patients's glycaemia.Using machine learning modelling for classification of diabetic patients according to their controllability. Research and application of different control algorithms for glycaemia regulation. Using machine learning and time series modelling for 60- and 120 min. ahead prediction of diabetic patients's glycaemia.Using machine learning modelling for classification of diabetic patients according to their controllability. Research and application of different control algorithms for glycaemia regulation.
-
-
-
-
Research Internship
-
Oct 2016 - Dec 2016
Analysis of data from sensors of diabetic patients for subsequent estimation of regression and classification mathematical models for predicting blood glucose. Matlab user. Analysis of data from sensors of diabetic patients for subsequent estimation of regression and classification mathematical models for predicting blood glucose. Matlab user.
-
-
Education
-
Universidad Nacional de Rosario - UNR
PhD. in Engineering, Electronic Engineering -
Universidad Nacional de Rosario - UNR
Electronic Engineer, Electronic Engineering